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LETTER TO THE EDITOR 
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t Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, 
USA 
$ Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650, USA 

Received 8 March 1989 

Abstract. An improved kinetic renormalisation group approach to diffusion-limited aggre- 
gation is presented. This approach is based on the growth process itself and accounts for 
the dispersity in the growth probabilities. It yields the multifractal spectrum D ( q )  with 
better values at smaller q. On the 2D square lattice we find D,=  1.694 for the fractal 
dimension of the cluster and that of its interface, and D(1) = 1.01 for the information 
dimension. The former agrees with the simulation results (D,= 1.70) and the latter compares 
very well with the exact value D(1) = 1. 

The analytical calculation of the multiscaling dimensions of diff usion-limited aggregates 
(DLA) and especially their fractal dimension, is still a formidable challenge [l,  21. This 
growth process (contrary, say, to that of the Eden model) is highly unstable: deviations 
from homogeneity are strongly enhanced thus leading to ramified dendritic-like struc- 
tures. The existence of rigorous field-theoretic and stochastic equations [3,4] may not 
be enough to derive a systematic momentum-space renormalisation group ( RG) 

approach (as opposed to the Eden model [ 5 ] )  since no known regularisation process 
may control these strong instabilities. 

The real-space RG approach may provide an alternative route because it is not 
based on an expansion around a solvable limit. Rather, one may look for self-consistent 
relations between probabilities of configurations directly inside this ‘strongly chaotic’ 
regime. The first steps in that direction were suggested by Gould et ai [6], Nakanishi 
and Family [7] and Montag et a1 [8]. These works followed closely the real-space RG 
to static clustering models. 

Important progress was made in more recent works: Pietronero et ai [9] introduced 
a fixed-scale transformation based on the inherent multiplicative randomness of the 
growth process, and obtained an estimate for the 2~ fractal dimension Df= 1.64. 
Nagatani, in a series of papers [ 101, introduced an RG approach to compute the growth 
probabilities on the cluster surface froni which he obtained the multifractal spectrum. 
To derive his estimate for the fractal dimension, however, he had to rely on the 
Turkevich-Scher [ 111 relation Dr= 1 + D(oo), the validity of which has been questioned 
by Halsey [12]. 

Following some of Nagatani’s ideas, we have introduced in a previous work [ 131 
(hereafter denoted I) a new kinetic renormalisation group (KRG) approach. In this 
approach recursion relations for the physical parameters of the cluster, its mass and 
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that of its interface were derived. We were able to show that the bulk and surface 
have the same fractal dimension and obtained its value Df= 1.73 and 2.494 for 2~ and 
3~ respectively. In addition a correction-to-scaling exponent Di was derived from the 
subleading eigenvalue. The multifractal spectrum D ( q )  and f - a  curves were also 
obtained. As expected the best results were obtained for larger values of q while for 
small q (in the regions with small growth probabilities) the agreement with the 
simulations was not SO good. 

In the present letter we present an important step forward to an improved KRG 
approach which accounts better for the dispersity in the growth probabilities on different 
surface sites. The KRG approach is based on the combined time and length scale 
invariance of the DLA cluster which is used to obtain the relation between the prob- 
abilities for configurations on consecutive scales directly from the growth process itself. 
Indeed, given a cluster configuration at time t, probabilities for the configuration at 
time t + 1 (with one more particle) are completely defined from the growth probabilities 
on the surface sites. The KRG approach uses the fact that the growth probability 
distribution remains invariant and is the same at r + 1 as it was at t. In practice we 
can only find the recursion relations between probabilities of the configurations of 
small cells, like the one we choose here depicted in figures 1 and 2. 
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Figure 1. All possible configurations which are renormalised to the vertical perimeter bonds 
for the square lattice. 

Three types of bonds are defined at each order n of the transformation: bulk bonds 
representing the particles on the cluster with mass M,, (bold lines in figures 1 and 2); 
perimeter bonds, with mass m,, (wavy lines), representing the surface of the aggregate 
on which the next potential growth may occur; massless empty bonds for the rest (thin 
lines). 

As a particle is added to the cluster one perimeter bond turns into a bulk bond 
and all its unoccupied neighbours become growth bonds. The following rules guide 
the transformation. If the cell is connected from top to bottom by bulk bonds it will 
be renormalised into a bulk bond; if the cell is completely empty it will be renormalised 
to an empty bond; all other configurations are renormalised into a perimeter bond. 

In order to find the local growth probabilities on each bond we use the equivalence 
between the DLA problem and that of the dielectric breakdown [14]. The growth 
probability in the frontier is proportional to the (normalised) voltage drop, or local 
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Figure 2. All possible configurations which are renormalised to the vertical bulk bonds 
for the square lattice. 

electric field, in the latter. In order to compute their distribution each perimeter bond 
is assigned a conductance u (it is chosen to be 1 on empty bonds and is obviously 
infinite on the conducting bulk bonds). 

In I, all perimeter bonds were considered equivalent with the same mass m, and 
the same conductance a,,. In the upgraded version of the KRG presented here, this 
constraint is released. The different configurations in figure 1 will be renormalised 
into perimeter bonds with different masses and different conductances. Similarly, the 
configurations in figure 2 will yield bulk bonds with different masses (they all have 
infinite conductances). We therefore allow the RG flow to take place in a much larger 
parameter space and assign to the conductances their fixed-point values rather than 
arbitrary values. In the following, Greek superscripts denote different cell configur- 
ations and the Roman subscripts the different bonds of the cell. 

To find the conductances and growth probabilities for each bond in figure 1, we 
solve the equivalent Kirchoff problem with zero voltage at the bottom of the cluster 
and unit voltage at the top. Let us take configuration 2 of figure 1 as an example. If 
we denote U , ,  U,, and U, as the conductances of the respective bonds and E!”, Ei2’, 
and Ei2) as the potential drops on them, we have 

E\” = 1 ( l a )  

E$,’=  E$2’=l/( l+u2+u3).  ( 1 b )  

uy = 

The cell conductance in configuration 2 will thus be 

( + I +  ( U 2  + ‘73)/ ( 1 + ff2 + ff3) (2) 

From the potential drops, we can find the growth probabilities on these bonds, 
proportional to the potential drops: 

(3a) 

(3b)  

(1 +ff ,+ff3) / (3  + U2 + f f3)  
p;‘2’ = 

p;‘2’ - r e ’  = 1 -p3 / (3+u2+a3) .  

Next we have to find the weights C(u’  (namely their relative occurrence) of the 
different cell configurations in figure 1 (and, similarly, the weights W‘”’ of those in 
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figure 2). The weights are not independent since, e.g., configuration 3 is obtained from 
configuration 2 by adding a particle on bond 2 and therefore 

Similar relations between the rest of the C'"' and the requirement X i G l  C'"'= 1 allow 
us to express them in terms of the pl'"', e.g. in terms of U""'. The values of the 
renormalised conductances U""', on the other hand, depend on the C'"'. To compute 
the renormalised conductance U""', we recall that ul, a, and u3 may assume any of 
the four a'") values, each with a probability C'"'. Summing over all 43 = 64 possible 
assignments of the four U'") to three conductances in configuration 2 of figure 1, we 
find the renormalised u"z' in terms of the dU) and C'"'. 

In a similar way expressions for all u " ~ )  are obtained. We then use equations 
similar to ( 3 4  b) to find expressions for the pl'") from which we derive expressions 
for the C'"' using relations like (3c). 

The fixed-point value for a'n) and C'"' are then found by solving their system of 
coupled non-linear equations. We find 

5.954 d4'* = 5.954 (4a) U'')* = 3.817 u(3)* = U(')* = 1.431 

c(1)* = 0.447 c(z)* = 0.447 C'3)* = 0.053 C'4'* = 0.053. (46) 
These fixed-point values are a major step forward with respect to our earlier work 
where we have arbitrarily assigned U'")= 1 (and the C'"' were calculated based on 
these values). 

The multifractal dimensions [13,15,16], which describe the hierarchy of the DLA 
cluster, are given by 

(3c) c'3'= C'Z' r'2) 
P z  * 
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Figure 3. The plot of D(q)  against q for the DLA 
on the square lattice. 

Figure 4. The plot off against U for the DLA on the 
square lattice. 
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The curve D ( q )  is shown in figure 3. The f-a spectrum, the Legendre transformation 
of D ( q ) ,  is also shown in figure 4. 

Similarly, we can find the recursion relations between the W'"' and, by solving 
them, we obtain 

W"' = 0.28 W'"'=0.18 for i = 2-5. (6) 

Having found the C'") and W'"' we can then find recursion relations of the m'"' 
and M'"'. For example, 
m'2) = 2(C'l"'I'+ C(2)m(2'+ c ( 3 ' m ( 3 ) +  c '4)m'4))+  W'l"''+ WWM'2) 

+ W'3'M'3'+ W(4'M'4)+ W(5)M(S' (7a) 

for the cell of configuration 2 of figure 1,  which has two vertical perimeter bonds and 
one vertical bulk bond, and which is renormalised to a perimeter bond with mass m(2). 

This recursion relation may also be expressed as 

m(2)=2fi+n;i (7b)  
where tii = Z",, C'"'m'"' , and A?=Z',=, W'")M'").  Since all renormalised masses 
only depend on these combinations we rather look at their recursion relations: 

(!Jn=T(;) . 
n - I  

The eigenvalues of the matrix T are 

From the largest eigenvalue we find the fractal dimension of both the bulk and the 
interface of the cluster: Dr= ln(A+)/ln(2) = 1.694. The smallest eigenvalue yields a 
correction-to-scaling exponent Di = In( A-)/ln(2) = 0.624. 

The value of Dr we find above is consistent with the most accurate values extracted 
from large-scale simulations (Of= 1.70*0.07). This agreement for Df is better than 
that of the value Df= 1.727 obtained by a simplest approach in I. The advantage of 
this new approach is also apparent if we inspect the information (entropy) dimension: 
the exact value is D( 1 )  = 1 [17]; here we obtained D(1) = 1.01 compared with D(1) = 
1.14 in our previous work. Because of the small cell we consider, we still cannot expect 
a very good agreement at the extrema1 values of q = 0 and 4 = 03. 

The conceptual improvement of the KRG approach is reflected by an amelioration 
of the results for the fractal dimension and for a range of smaller values of 4 (which 
includes 4 = 1 ) .  With larger cells one may hope to improve the description in both 
tails of the probability distribution as well. 

Comments from T Blum are acknowledged. 
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